固有空間の次元(1)

固有空間の次元は固有値の重複度を超えません。固有空間が部分空間であることと、重複度の定義より、これを示します。

固有空間の次元に関する考察は、正方行列が対角化可能であるための必要十分条件を導く上で、重要な役割を果たします。

固有空間の次元と重複度


定理 6.11(固有空間の次元と重複度)

VV をベクトル空間、f:VVf : V \to V を線型変換とする。ff の固有値 λ\lambda の固有空間を W(λ)W (\lambda) とすると、W(λ)W (\lambda) の次元は λ\lambda の重複度を超えない。

dimW(λ)    multiplicity  of    λ(6.3.2) \begin{equation} \dim W (\lambda) \; \leqslant \; \text{multiplicity} \; \text{of} \; \; \lambda \end{equation} \tag{6.3.2}


解説

対角化可能であるための十分条件

前項定理 6.10(対角化可能であるための十分条件)より、相異なる nn 個の固有値を持つならば nn 次の正方行列は対角化可能であるといえます。

ここで、「相異なる nn 個の固有値を持つ」ことは、nn 次の正方行列が対角化可能であるための十分条件ではありますが、必要条件ではありません。

つまり、正方行列の固有値に重複があっても対角化可能な場合があるということです。

固有値に重複がある場合の対角化可能性

定理 6.11(固有空間の次元と重複度)は、固有値に重複がある場合において、行列が対角化可能であるための条件を考察するにあたって重要な役割を果たします。また、定理 6.11により、逆に、行列が対角化可能であるとき、固有空間の次元がどのような条件を満たすかを導くことができます。

つまり、定理 6.11は、正方行列が対角化可能であるための必要十分条件を導く際に重要な定理であるということです。



証明

ff の表現行列を AA として、固有値 λ\lambda の重複度を mm とすると、AA の固有多項式は次のように表すことができる。ここで、λ\lambda は固有方程式 ϕA(t)=0\phi_{A} (t) = 0 の解であり、重複度は mm であるので、ψA(λ)0\psi_{A} (\lambda) \neq 0 である。

ϕA(t)=(λt)m  ψA(t) \begin{align*} \tag{\ast} \phi_{A} (t) = (\lambda - t)^{m} \; \psi_{A} (t) \end{align*}

いま、固有空間 W(λ)W (\lambda) の次元を rr として、v1,,vr\bm{v}_{1}, \cdots, \bm{v}_{r}W(λ)W (\lambda) の基底とする。このとき、定理 6.2(固有空間)より、W(λ)W (\lambda)VV の部分空間であるので、明らかに v1,,vrV\bm{v}_{1}, \cdots, \bm{v}_{r} \in V であり、ここにいくつかのベクトルを加えて VV の基底 v1,,vr,\bm{v}_{1}, \cdots, \bm{v}_{r}, vr+1,,vn\bm{v}_{r+1}, \cdots, \bm{v}_{n} を作ることができる。VV の基底の座標ベクトルを、それぞれ x1,,xr,\bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn\bm{x}_{r+1}, \cdots, \bm{x}_{n} とすると、1ir1 \leqslant i \leqslant r について、Axi=λxiA \bm{x}_{i} = \lambda \bm{x}_{i} であることから、次が成り立つ。

A(x1,,xr,xr+1,,xn)=(x1,,xr,xr+1,,xn)(λλOB) \begin{align*} & A \, (\, \bm{x}_{1}, \cdots, \bm{x}_{r}, \bm{x}_{r+1}, \cdots, \bm{x}_{n} \,) \\ & = (\, \bm{x}_{1}, \cdots, \bm{x}_{r}, \bm{x}_{r+1}, \cdots, \bm{x}_{n} \,) \left( \begin{array} {c|c} \begin{matrix} \lambda & & \\ & \ddots & \\ & & \lambda \\ \end{matrix} & \begin{matrix} & & \\ & \ast & \\ & & \\ \end{matrix} \\ \hline \begin{matrix} & & \\ & \large{O} & \\ & & \\ \end{matrix} & \begin{matrix} B \end{matrix} \\ \end{array} \right) \end{align*}

ここで、x1,,xr,\bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn\bm{x}_{r+1}, \cdots, \bm{x}_{n}KnK^{n} の基底であるから、線形独立である。したがって、P=(x1,,xr,P = (\, \bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn)\bm{x}_{r+1}, \cdots, \bm{x}_{n} \,) とすると PP は正則であり、次が成り立つ。

P1AP=(λλOB) P^{-1} A P = \left( \begin{array} {c|c} \begin{matrix} \lambda & & \\ & \ddots & \\ & & \lambda \\ \end{matrix} & \begin{matrix} & & \\ & \ast & \\ & & \\ \end{matrix} \\ \hline \begin{matrix} & & \\ & \large{O} & \\ & & \\ \end{matrix} & \begin{matrix} B \end{matrix} \\ \end{array} \right)

更に、定理 6.6(相似な行列の固有多項式)より、相似な行列の固有多項式は等しいので、ϕA(t)\phi_{A} (t) について、次が成り立つ。

ϕA(t)=ϕP1AP(t)=P1APtE=  λtλtOBtE  =(λt)rBtE=(λt)rϕB(t) \begin{align*} \phi_{A} (t) &= \phi_{P^{-1} A P} (t) \\ &= \big\lvert \, P^{-1} A P - t E \, \big\rvert \\ &= \left\lvert \; \begin{array} {c|c} \begin{matrix} \lambda - t & & \\ & \ddots & \\ & & \lambda - t \\ \end{matrix} & \begin{matrix} & & \\ & \ast & \\ & & \\ \end{matrix} \\ \hline \begin{matrix} & & \\ & \large{O} & \\ & & \\ \end{matrix} & \begin{matrix} B - t E \end{matrix} \end{array} \; \right\rvert \\ &= (\lambda - t)^{r} \, \big\lvert \, B - t E \, \big\rvert \\ &= (\lambda - t)^{r} \, \phi_{B} (t) \tag{\ast \ast} \end{align*}

上記(\ast)と(\ast \ast)より、次が成り立つ。

(λt)rϕB(t)=(λt)m  ψA(t) \begin{gather*} (\lambda - t)^{r} \, \phi_{B} (t) = (\lambda - t)^{m} \; \psi_{A} (t) \end{gather*}

ここで、ψA(λ)0\psi_{A} (\lambda) \neq 0 であることから、rmr \leqslant m である。したがって、W(λ)W (\lambda) の次元は λ\lambda の重複度を超えない。\quad \square



証明の考え方

11)固有値 λ\lambda の重複度 mm と(22)固有空間 W(λ)W (\lambda) の次元 rr を、それぞれ用いて固有多項式 ϕA(t)\phi_{A} (t) を表し、(33)これを比較することで、rmr \leqslant m を導きます。

(1)固有値の重複度による固有多項式

  • ff の表現行列を AA として、固有値 λ\lambda の重複度を mm とします。

  • 固有値の重複度に示した通り、このとき、λ\lambda は固有方程式 ϕA(t)=0\phi_{A} (t) = 0mm 重解であり、AA の固有多項式は、次のように表すことができます。

    ϕA(t)=(λt)m  ψA(t) \begin{align*} \tag{\ast} \phi_{A} (t) = (\lambda - t)^{m} \; \psi_{A} (t) \end{align*}

  • VV の次元を nn とすれば、固有多項式 ϕA(t)\phi_{A} (t)nn 次多項式となります。

  • したがって、\ast)式は、nn 次の固有多項式 ψA(t)\psi_{A} (t) が、mm 次の多項式 (λt)m(\lambda - t)^{m} と、(nm)(n-m) 次の多項式 ψA(t)\psi_{A} (t) の積に分解できることを意味しています。

  • ここで、ψA(λ)0\psi_{A} (\lambda) \neq 0 が成り立つ点に注意する必要があります。仮に、ψA(λ)=0\psi_{A} (\lambda) = 0 であるとすると、固有方程式 ϕA(t)=0\phi_{A} (t) = 0λ\lambda を解として (m+1)(m+1) 個以上持つことになりますが、これは λ\lambda の重複度を mm と置いたことに矛盾します。

(2)固有空間の次元による固有多項式

基底の構築
  • まず、W(λ)W (\lambda) の基底を拡張して VV の基底を作ります。
  • 固有空間 W(λ)W (\lambda) の次元を rr として、v1,,vr\bm{v}_{1}, \cdots, \bm{v}_{r}W(λ)W (\lambda) の基底とします。
    • 定理 6.2(固有空間)より、W(λ)W (\lambda)VV の部分空間であるので、明らかに v1,,vrV\bm{v}_{1}, \cdots, \bm{v}_{r} \in V です。
    • また、v1,,vr\bm{v}_{1}, \cdots, \bm{v}_{r} は線形独立であるので、定理 4.33(線型独立なベクトルと基底)より、v1,,vr\bm{v}_{1}, \cdots, \bm{v}_{r} にいくつかのベクトルを加えて VV の基底を作ることができます。
  • v1,,vr\bm{v}_{1}, \cdots, \bm{v}_{r} を拡張した、v1,,vr,\bm{v}_{1}, \cdots, \bm{v}_{r}, vr+1,,vn\bm{v}_{r+1}, \cdots, \bm{v}_{n}VV の基底とします。
部分的な対角化
  • 次に、VV の基底の座標ベクトルにより、表現行列 AA が部分的に対角化します。

  • VV の基底の座標ベクトルをそれぞれ x1,,xr,\bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn\bm{x}_{r+1}, \cdots, \bm{x}_{n} とします。

    • このとき、VVKnK^{n} は同型(VKnV \simeq K^{n})であるから、x1,,xr,\bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn\bm{x}_{r+1}, \cdots, \bm{x}_{n}KnK^{n} の基底となります(定理 4.40(同型写像と線型独立性))。
  • いま、前項定理 6.10(対角化可能であるための十分条件)と同じ考え方により、nn 個の列ベクトル Ax1,,AxnA \bm{x}_{1}, \cdots, A \bm{x}_{n} をまとめて行列として表すことを考えます。Ax1,,AxnA \bm{x}_{1}, \cdots, A \bm{x}_{n} をまとめて表した行列は次のようになります。

    A(x1,,xr,xr+1,,xn)=(x1,,xr,xr+1,,xn)(λλOB) \begin{align*} & A \, (\, \bm{x}_{1}, \cdots, \bm{x}_{r}, \bm{x}_{r+1}, \cdots, \bm{x}_{n} \,) \\ & = (\, \bm{x}_{1}, \cdots, \bm{x}_{r}, \bm{x}_{r+1}, \cdots, \bm{x}_{n} \,) \left( \begin{array} {c|c} \begin{matrix} \lambda & & \\ & \ddots & \\ & & \lambda \\ \end{matrix} & \begin{matrix} & & \\ & \ast & \\ & & \\ \end{matrix} \\ \hline \begin{matrix} & & \\ & \large{O} & \\ & & \\ \end{matrix} & \begin{matrix} B \end{matrix} \\ \end{array} \right) \end{align*}

    • x1,,xr\bm{x}_{1}, \cdots, \bm{x}_{r}AA の固有ベクトルであり、1ir1 \leqslant i \leqslant r について、Axi=λxiA \bm{x}_{i} = \lambda \bm{x}_{i} が成り立ちます。したがって、右辺の行列において、第 11\simrr 列は部分的に対角化されます。
    • 一方で、xr+1,,xn\bm{x}_{r+1}, \cdots, \bm{x}_{n} は単に KnK^{n} の基底をなすベクトルであり、AA の固有ベクトルではありません。したがって、r+1inr+1 \leqslant i \leqslant n については、Axi=jnbijxjA \bm{x}_{i} = \displaystyle \sum_{j}^{n} \, b_{ij} \, \bm{x}_{j} となります。
    • よって、右辺の行列の第 r+1r + 1\simnn 列は、基底の間の関係を表す任意の成分となります。
    • 便宜上、右上の (r,nr)(r, n - r) 型ブロックを \ast で、右下の (nr,nr)(n - r, n - r) 型ブロックを BB で表しますが、記号に特別な意味はありません。
  • いま、x1,,xr,\bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn\bm{x}_{r+1}, \cdots, \bm{x}_{n}KnK^{n} の基底であるので、P=(x1,,xr,P = (\, \bm{x}_{1}, \cdots, \bm{x}_{r}, xr+1,,xn)\bm{x}_{r+1}, \cdots, \bm{x}_{n} \,) とすると、定理 4.27(行列式と線型独立性)より、PP は正則です。

  • したがって、両辺に左から P1P^{-1} を掛けると、次が成り立ちます。

    P1AP=(λλOB) P^{-1} A P = \left( \begin{array} {c|c} \begin{matrix} \lambda & & \\ & \ddots & \\ & & \lambda \\ \end{matrix} & \begin{matrix} & & \\ & \ast & \\ & & \\ \end{matrix} \\ \hline \begin{matrix} & & \\ & \large{O} & \\ & & \\ \end{matrix} & \begin{matrix} B \end{matrix} \\ \end{array} \right)

  • これにより、AA が部分的に対角化されることがわかりました。

固有空間の次元による固有多項式の導出
  • 以上の考察を踏まえて、固有空間 W(λ)W (\lambda) の次元 rr を用いて、AA の固有多項式 ϕA(t)\phi_{A} (t) を表します。

    ϕA(t)=(i)ϕP1AP(t)=(ii)P1APtE=(iii)  λtλtOBtE  =(iv)(λt)rBtE=(v)(λt)rϕB(t) \begin{align*} \phi_{A} (t) &\overset{(\text{i})}{=} \phi_{P^{-1} A P} (t) \\ &\overset{(\text{ii})}{=} \big\lvert \, P^{-1} A P - t E \, \big\rvert \\ &\overset{(\text{iii})}{=} \left\lvert \; \begin{array} {c|c} \begin{matrix} \lambda - t & & \\ & \ddots & \\ & & \lambda - t \\ \end{matrix} & \begin{matrix} & & \\ & \ast & \\ & & \\ \end{matrix} \\ \hline \begin{matrix} & & \\ & \large{O} & \\ & & \\ \end{matrix} & \begin{matrix} B - t E \end{matrix} \end{array} \; \right\rvert \\ &\overset{(\text{iv})}{=} (\lambda - t)^{r} \, \big\lvert \, B - t E \, \big\rvert \\ &\overset{(\text{v})}{=} (\lambda - t)^{r} \, \phi_{B} (t) \tag{\ast \ast} \end{align*}

(3)固有多項式の比較

  • 11重複度 mm を用いて表した ϕA(t)\phi_{A} (t)22固有空間 W(λ)W (\lambda) の次元 rr を用いて表した ϕA(t)\phi_{A} (t) を比較して rmr \leqslant m を導きます。

  • 1122の考察から、ϕA(t)\phi_{A} (t) は、次のように 22 通りに表すことができました。

    ϕA(t)=(λt)m  ψA(t)ϕA(t)=(λt)rϕB(t) \begin{align*} \phi_{A} (t) &= (\lambda - t)^{m} \; \psi_{A} (t) \tag{\ast} \\ \phi_{A} (t) &= (\lambda - t)^{r} \, \phi_{B} (t) \tag{\ast \ast} \\ \end{align*}

  • ここで、当然\ast)式\ast \ast)式は等しく、次が成り立ちます。

(λt)rϕB(t)=(λt)m  ψA(t) \begin{gather*} (\lambda - t)^{r} \, \phi_{B} (t) = (\lambda - t)^{m} \; \psi_{A} (t) \end{gather*}
  • 上式において、ψA(λ)0\psi_{A} (\lambda) \neq 0 であることから、rmr \leqslant m が成り立ちます。
    • ψA(λ)0\psi_{A} (\lambda) \neq 0 が成り立つことについては11で考察した通りです。
    • 別のいい方をすれば、固有値 λ\lambda の重複度は mm であるので、固有方程式 ϕA(t)=0\phi_{A} (t) = 0 の解としての λ\lambda の個数は、最大でも mm であり、rr がこれを超えることはないということです。
  • 以上から、固有値 λ\lambda の固有空間の次元は、重複度を超えないことが示されました。

まとめ

  • VV をベクトル空間、f:VVf : V \to V を線型変換とする。ff の固有値 λ\lambda の固有空間を W(λ)W (\lambda) とすると、W(λ)W (\lambda) の次元は λ\lambda の重複度を超えない。
    dimW(λ)    multiplicity  of    λ \begin{equation*} \dim W (\lambda) \; \leqslant \; \text{multiplicity} \; \text{of} \; \; \lambda \end{equation*}

参考文献

[1] 齋藤正彦. 線型代数入門. 東京大学出版会. 1966.
[2] 永田雅宣 他. 理系のための線型代数の基礎. 紀伊國屋書店. 1986.
[3] 川久保勝夫. 線形代数学 [新装版]. 日本評論社. 2010.
[4] 松坂和夫. 線型代数入門 [新装版]. 岩波書店. 2018.
[5] 三宅敏恒. 線形代数学 初歩からジョルダン標準形へ. 培風館. 2008.
[6] S. Lang. Linear Algebra Third Edition. Springer. 1987.
[7] T. Miyake. Linear Algebra From the Beginnings to the Jordan Normal. Springer. 2022.
[8] 雪江明彦. 代数学 11 群論入門. 日本評論社. 2010.
[9] 雪江明彦. 代数学 22 環と体とガロア理論. 日本評論社. 2010.
[10] 桂利行. 代数学 I\text{I} 群と環. 東京大学出版会. 2004.
[11] 松坂和夫. 代数系入門. 岩波書店. 1976.
[12] 高木貞治. 代数学講義 [改訂新版]. 共立出版. 1965.
[13] S. Lang. Algebra Revised Third Edition. Springer. 2002.
[14] M. Artin. Algebra Second Edition. Pearson Education Limited. 2014.
[15] 青本和彦 他. 数学入門辞典. 岩波書店. 2005.


初版:2024-10-09   |   改訂:2025-02-01