基本変形の性質

行列の基本変形に対して階数が不変であることを示します。すなわち、ある行列に基本変形の操作を行っても階数の値は変わりません。

これは、行列の基本変形の重要な性質の 11 つです。

基本変形と階数


定理 5.10(基本変形と階数)

基本変形によって行列の階数は不変である。



解説

基本変形は階数の値を保存する

定理 5.10(基本変形と階数)は、行列の基本変形が、階数の値を保存することを示しています。すなわち、任意の行列に対して、基本変形の各操作を行っても、階数の値は変わりません。

11)ある行を cc 倍(c0c \neq 0)する。
22)ある行を cc 倍して他の行に加える。
3322 つの行を入れ替える。
11^{\prime})ある列を cc 倍(c0c \neq 0)する。
22^{\prime})ある列を cc 倍して他の列に加える。
33^{\prime}22 つの列を入れ替える。

基本行列との積の階数

定理 5.8(基本変形と基本行列の対応)に示したように、ある行列に対して基本変形を行うことは対応する基本行列を掛けることと同じです。

したがって、ある行列 AA に対して(複数の)基本変形の操作を行った行列は、もとの行列 AA と、基本変形に対応する基本行列の積として表すことができます。

このように考えると、定理 5.10(基本変形と階数)は、次のように表すことができます。

rankA=rank(PsP1AQ1Qt) \begin{equation} \tag{5.2.1} \text{rank} \, A = \text{rank} \, (\, P_{s} \cdots P_{1} \, A \, Q_{1} \cdots Q_{t} \,) \end{equation}

ここで、AA(m,n)(m, n) 型行列とすると、P1PsP_{1} \cdots P_{s}mm 次の基本行列であり AA に対する行基本変形を表しています。同様に、Q1QtQ_{1} \cdots Q_{t}nn 次の基本行列であり AA に対する列基本変形を表しています。

階数の定義と基本変形の関係

基本変形による階数の定義

次項で改めて考察するように、行列の階数は、基本変形により保存される特性(値)として定義することもできます。

すなわち、線型写像や次元といったベクトル空間の概念を持ち出さず、行列の基本変形という具体的な操作のみから、階数を定義することができるということです。このような定義を採用している教科書としては、例えば [1] などがあります。

基本変形により階数を定義するメリット

基本変形により行列の階数を定義することで、かなり早い段階で(ベクトル空間の定義に先立って)階数の概念を導入できます。しかしながら、行列の階数の重要性は、行列と線型写像の対応などのベクトル空間の概念と合わせて考えてこそ理解できるものです。したがって、基本変形のみから階数を導入する利点は、連立一次方程式の解法が早めに手に入ることくらいしかありません。



証明

AA(m,n)(m, n) 型行列とすると、AA に対して基本変形を行った行列 AA^{\prime} は、次のように表せる。ここで、P1PsP_{1} \cdots P_{s}mm 次の基本行列であり、Q1QtQ_{1} \cdots Q_{t}nn 次の基本行列である。

A=PsP1AQ1Qt A^{\prime} = P_{s} \cdots P_{1} \, A \, Q_{1} \cdots Q_{t}

定理 5.9(基本行列の正則性)より、基本行列は正則であるからその積も正則である。また、定理 4.62(対等な行列の階数)より、対等な行列の階数は等しいので、次が成り立つ。

rankA=rank(PsP1AQ1Qt)=rankA \begin{split} \text{rank} \, A^{\prime} &= \text{rank} \, (\, P_{s} \cdots P_{1} \, A \, Q_{1} \cdots Q_{t} \,) \\ &= \text{rank} \, A \\ \end{split}

したがって、AA^{\prime} の階数は AA の階数に等しく、基本変形によって行列の階数は変わらない。\quad \square



証明の考え方

ある行列に対する基本変形は、対応する基本行列との積として表すことができます(定理 5.8(基本変形と基本行列の対応))。また、定理 5.9(基本行列の正則性)より、基本行列は正則であることがわかっていますので、定理 4.62(対等な行列の階数)を利用して、基本変形により階数が変わらないことを導きます。

基本行列との積による表現

  • AA(m,n)(m, n) 型行列として、AA に対して基本変形を行った行列を AA^{\prime} とします。

  • 定理 5.8(基本変形と基本行列の対応)より、AA に対する基本変形は、AA に基本行列を掛けることと同じです。

  • したがって、AA^{\prime} は次のように表せます。

    A=PsP1AQ1Qt \begin{align*} A^{\prime} = P_{s} \cdots P_{1} \, A \, Q_{1} \cdots Q_{t} \end{align*}

    • ここで、P1PsP_{1} \cdots P_{s}mm 次の基本行列であり、Q1QtQ_{1} \cdots Q_{t}nn 次の基本行列です。
    • P1PsP_{1} \cdots P_{s}AA に対する行基本変形に、Q1QtQ_{1} \cdots Q_{t}AA に対する列基本変形に、それぞれ対応しています。

階数の計算(対等な行列の階数)

  • 定理 5.9(基本行列の正則性)より、基本行列は正則であるから、その積も正則です。

  • すなわち、P=P1Ps,Q=Q1QtP = P_{1} \cdots P_{s}, \, Q = Q_{1} \cdots Q_{t} とすれば、P,QP, \, Q は正則行列となります。

  • このとき A=PAQA^{\prime} = P A Q と表すことができます。

  • つまり、AA^{\prime}AA に対等な行列であるということです(定理 4.49(対等な行列))。

  • 定理 4.62(対等な行列の階数)より、対等な行列の階数は等しいので、AA^{\prime} の階数は AA の階数に等しくなります。

    rankA=rank(PsP1AQ1Qt)=rank(PAQ)=rankA \begin{split} \text{rank} \, A^{\prime} &= \text{rank} \, (\, P_{s} \cdots P_{1} \, A \, Q_{1} \cdots Q_{t} \,) \\ &= \text{rank} \, (\, P A Q \,) \\ &= \text{rank} \, A \\ \end{split}

  • 以上から、題意が示されました。


まとめ

  • 基本変形によって行列の階数は不変である。

  • このことは、次のように表せる。

    rankA=rank(PsP1AQ1Qt) \begin{align*} \text{rank} \, A = \text{rank} \, (\, P_{s} \cdots P_{1} \, A \, Q_{1} \cdots Q_{t} \,) \end{align*}

    • ここで、AA(m,n)(m, n) 型行列、P1PsP_{1} \cdots P_{s} は(行基本変形に対応する)mm 次の基本行列、Q1QtQ_{1} \cdots Q_{t} は(列基本変形に対応する)nn 次の基本行列を表す。

参考文献

[1] 齋藤正彦. 線型代数入門. 東京大学出版会. 1966.
[2] 永田雅宣 他. 理系のための線型代数の基礎. 紀伊國屋書店. 1986.
[3] 川久保勝夫. 線形代数学 [新装版]. 日本評論社. 2010.
[4] 松坂和夫. 線型代数入門 [新装版]. 岩波書店. 2018.
[5] 三宅敏恒. 線形代数学 初歩からジョルダン標準形へ. 培風館. 2008.
[6] S. Lang. Linear Algebra Third Edition. Springer. 1987.
[7] T. Miyake. Linear Algebra From the Beginnings to the Jordan Normal. Springer. 2022.
[8] 雪江明彦. 代数学 11 群論入門. 日本評論社. 2010.
[9] 雪江明彦. 代数学 22 環と体とガロア理論. 日本評論社. 2010.
[10] 桂利行. 代数学 I\text{I} 群と環. 東京大学出版会. 2004.
[11] 松坂和夫. 代数系入門. 岩波書店. 1976.
[12] 高木貞治. 代数学講義 [改訂新版]. 共立出版. 1965.
[13] S. Lang. Algebra Revised Third Edition. Springer. 2002.
[14] M. Artin. Algebra Second Edition. Pearson Education Limited. 2014.
[15] 青本和彦 他. 数学入門辞典. 岩波書店. 2005.


初版:2023-07-04   |   改訂:2025-04-07